A Novel Classification Technique of Landsat-8 OLI Image-Based Data Visualization: The Application of Andrews' Plots and Fuzzy Evidential Reasoning
نویسندگان
چکیده
Andrews first proposed an equation to visualize the structures within data in 1972. Since then, this equation has been used for data transformation and visualization in a wide variety of fields. However, it has yet to be applied to satellite image data. The effect of unwanted, or impure, pixels occurring in these data varies with their distribution in the image; the effect is greater if impurity pixels are included in a classifier’s training set. Andrews’ curves enable the interpreter to select outlier or impurity data that can be grouped into a new category for classification. This study overcomes the above-mentioned problem and illustrates the novelty of applying Andrews’ plots to satellite image data, and proposes a robust method for classifying the plots that combines Dempster-Shafer theory with fuzzy set theory. In addition, we present an example, obtained from real satellite images, to demonstrate the application of the proposed classification method. The accuracy and robustness of the proposed method are investigated for different training set sizes and crop types, and are compared with the results of two traditional classification methods. We find that outlier data are easily eliminated by examining Andrews’ curves and that the proposed method significantly outperforms traditional methods when considering the classification accuracy.
منابع مشابه
An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملClassification of Complex Urban Fringe Land Cover Using Evidential Reasoning Based on Fuzzy Rough Set: A Case Study of Wuhan City
Urban fringe is the transition zone fine grained with urban and non-urban land cover types. The complex landscape mosaic in this area challenges the land cover classification based on the remote-sensing data. Spectral signatures are not efficient to discriminate all pixels into classes. To improve the recognition and handle the uncertainty, this paper provides a novel integrated approach, based...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملAssessment of a multi-sensor approach for noise removal on Landsat-8 OLI time series using CBERS-4 MUX data to improve crop classification based on phenological features
We investigated a method for noise removal on Landsat-8 OLI timeseries using CBERS-4 MUX data to improve crop classification. An algorithm was built to look to the nearest MUX image for each Landsat image, based on user defined time span. The algorithm checks for cloud contaminated pixels on the Landsat time series using Fmask and replaces them with CBERS-4 MUX to build the integrated time seri...
متن کاملComprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)
In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017